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SLENDER BODIES OF REVOLUTION HAVING
MINIMOM TOTAL DRAG AT HYPERSONIC SPEEDS
by

(*) (**)
ANGELO MIELE' ’ and DAVID G, HULL

SUMMARY

This paper conaiders the problem of minimizing the total drag (sum
of the pressure drag and the friction drag) of a slender, axisymmetrio
body at zero angle of attack in hypersonic flow under the assumption that
the distribution of pressure coefficients is Newtonian and that the frictiom
coefficient 18 constant, After the condition that the pressure coefficient
be nonnegative is accounted for, the minimal problem is solved for arbi-
trary conditions imposed on the diameter, the length, and the volume under
the assumption that the wetted area is free, It is shown that, if con-
venient dimensionless coordinates are employed (that is, if the abscisea
and the ordinate are normalized with respect to the length and the semi-
thickness), the totality of extremal arcs is composed of a two-parameter
family of solutions. Each extremal arc involves at most two corner points
and, hence, three subarcs: one of these is characterized by a positive
pressure coefficient and is called the regular shape; the other two are
characterized by a zero pressure coefficient and are called the zero=slope

shapes, ‘thus, four classes of bodies can be identified: (I) bodies com-

(‘)Director of Astrodynamics and Flight Mechanics, Boeing Scientific
Research ILaboratories,

(")Staff Associate, Boeing Scientific Research laboratories,



posed of a regular shape only, (II) bodies composed of a spike followed

by a regular shape, (III) bodies composed of a regular shape followed by a
cylinder, and (IV) bodies composed of a spike followed by a regular shape
followed by a cylinder.

Particular attention is devoted to solutions for which one, two, or
three of the quantities under consideration are prescribed, If only one
quantity is given (the diameter or the volume), the extremal arc consists
of & single subarc of class I regardless of the friction coefficient., If
two geometric quantities are given (the diameter and the length, the diameter
and the volume, or the length and the volume), a one-parameter family of ex-
tremal arcs exists which involves at most two subarcs; the associated pa-
rameter, called the friction parameter, is proportional to the cubic root
of the friction coefficient and is related to the quantities which are pre=-
scribed, Finally, if three geometric quantities are given (the diameter,
the length, and the volume), a two-parameter family of extremal arcs exists
which involve at most three subarcs; these parameters, called the frictiom
and the shape parameters, are related to the friction coefficient and the
geometric quantities which are prescribed. For each of the cases considered,
analytical expressions are derived for the optimum shape, the thickness

ratio, and the drag coefficient,
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1. INTRODUCTION

The problem of mimimising the drag of slender bodies of revelutioa
in hypersonic flow has attracted considerable attention in recent times,
With particular regard to the pressure drag, gensralised solutions have
been obtained in Ref, 1 under the assumption that the pressure distribution
is Newtonian and that, among the geometrical quantities being conaidered
(the diameter, the length, the wetted area, and he volume), two are pre=-
scribed and the remaining two are free. These solutions have been extended
in Ref, 2 to cover the case where three of these quantities are given and
only one is free,

While the investigations of Refs. 1 and 2 neglected the friction drag,
it should be noted that there exist practical values of the thickness ratio
for which the friction drag may have the same order of magnitude as the
pressure drag. Therefore, it is of interest to reinvestigate the problem
of the optimum slender shape from the point of wiew of minimizing the total
forebody drag, that is, the sum of the pressure drag and the friction drag.

For the case where the diameter and the length are prescribed, previous
investigations were carried out by Kennet (Ref, 3) assuming that the friction
coefficient is constant and by Miele and Cole (Ref. 4) assuming that the
distribution of friction coefficients along the contour is represented by a
power law, A more general problem consists of minimizing the total drag for
any number of conditions imposed on the diameter d, the length ¢, the wetted
area S, and the volume V. This is the problem coneidered in the present re-
port in connection with the following assumptions: (a) the body is slender

and has a circular cross-section; (b) the distribution of pressure coefficents



is Newtoniang and (o) the friction coefficient is constant along the contour,
The corresponding two-dimensionul problem is analyzed in Ref. 5 for any
number of conditions imposed on the thickness, the length, the enclosed

area, and the moment of inertia of the oontour.
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2, MINIMUM DRAG PROBLEM

Consider a body of revolution at zero angle of attack in a hypersonic
flow, and denote by x an axial coordinate, y a radial coordinate, and ¥
the derivative dy/dx. Under the slender body approximation 52 << 1, the
assumed Newtonian distribution of pressure coefficients simplifies to
C = 252. Consequently, the drag of that portion of the bLody which is in-

P
cluded between stations O and x is givemn by

C
D(x) = 4m f‘y(i} + é) ax ()
0

where ct is the friction coefficient, assumed constant. The corresponding

values of the wetted area and the volume are given by

x 2
S(x) = an ydx, V(x)awnu] y dx )
(o]

After the definitions
D(x - S(x - Vsz
o= ﬂs'nil » P 'éﬁl ' Ty )

are introduced, differentiation of both sides of Eqs. (1) and (2) with re-
spect to the independent variable leads to the following differential con-

straints;



C
&-y(?+-2‘-)-0
B-y=o0 (&)
y-¥ =0

Since the requirement that the slope be nonnegative everywhere cam be ex-

pressed as
i - p - 0 (5)

vhere p denotes a real variable, the differential system composed of Eqs. (k)
and (5) involves one independent variable (x), five dependent wvariables

(¥, ay By vy P), and one degree of freedom. In this connection, after as-
suming that

xiuyinainpinyino (6)

and that some, but not all, of the remaining state variables are given at
the final point, one can formulate the minimum drag problem as followss

In the class of functions leh ngh ES‘Z: ﬂxh g‘xz which are consistent
with the differential constrainte (4) and 322 and the initia)l conditions
(6), find that special set which minimizes the difference M3 = G, = G,, where

= a
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3« NECESSARY CONDITIONS

The previous problem is of the Mayer type with separated end conditions.
Consequently, after the Lagrange multipliers 7\1 through A, are introduced

and the fundamental function is written as (Refs. 6 and 7)

c * . .
F-AIF-yG}+fﬂ*xéa-y%*Bw-y%+xuy-f) )

the extremal arc is described by the following Euler-Lagrange equations:

c
& Oy - 327D - - xl(i’ . -}) - Ay - 2gy
A=0 (®)

0 = kup

the second, third, and fourth of which can be integrated to give

A,=C A, = C (9)

\M=C 3" C

) 2 2"
where Cl, cz. and (13 are constants, Furthermore, after it is observed that
the fundamental function does not contain the independent variable explicitly
and after Eq. (8-5) is accounted for, the following first integral can be

established;



C
Oly({- - 2?) + Gy + 0512 = C (10)

where C is a constant,

Corner conditions. As the fifth Euler equation indicates, the ex-

tremal arc is composed of the subarcs

)y = 0 and/or p = O 1)

Along the former subarcs, called regular shapes, the pressure coefficient
is always positive as long as p is real, Along the latter subarcs, called

zero-slope shapes, the pressure coefficient is always zero, The junction

between the subarces must be studied with the aid of the Erdmann-Welerstrass
corner conditions. They require that each of the integrstion conatants
cl. Ca. 03. C has the same value for all the subarcs composing the extremal

arc and that(")

MyP) = 80N, - 3¢3%) = 0 12)

where A(...) denotes the difference between quantities evaluated after the

corner and before the cormer, These equations admit two sets of solutions

y>0, &y =0, AN=0
13)

,-O' A\uno

*) o (12-1) 1is a consequence of the first integral (10) and the con-
tinuity of the integration constants,
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meaning that the transition from one subarc to amother occurs without a
discontinuity in the slope away from the axis of aymuetry but may ocour
vith a discontinuity in the slope on the axis of symmetry. If Eqs. (11)
and (13) are combined, the following relations can be shown to hold on

both sides of a corner point:

Yy>o, M"ov y=0
(k)
y-O, khto

End conditions, The end conditions are partly of the fixed end-point
type and partly of the natural type., The latter must be determined from the

transversality condition

[- C dx + (c1 +1) da + C,ap + c}dy + (k# - 301y52)dy]: =0 (15)

which must be satisfied for every system of differentiales consistent with

the prescribed end conditions; in particular, it implies that c1

If the length is free, the transversality condition yields C = O, Om

--l.

the other hand, if either the wetted area or the volume is free, the trans-

versality condition leads to 02 = O or C, = 0, respectively. Finally, if

3
the diameter is free, the transversality condition leads to

(O + 3537, = 0 (16)

which, if combined with the Euler-lagrange equation (8-5), implies that
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A‘tf = ,f =0 (17)

Consequently, if d = 2yf denotes the diameter, the firast integral (10)
yielde the additional relationship

°*°:E"°az"‘°3¢‘° (18)

At this point, it is convenient to separate the discussion into two
basic problems: nroblems where the wetted area is given and problems wkare
the wetted area is free. As Eqs. (1) and (2-1) show, problems of the first
kind are characterized by the fact that the friction drag is independent of
the shape so that the contour which minimizes the total drag is identical
with that which minimizes the pressure drag. Since shapes of minimum pree-
sure drag have been fully disoussed in Refs, 1 and 2, these problems are
not considered here. Thus, the analysis is restricted to problems of the
second kind, in which the wetted area is free, This class of problems con-
tains several subolasses which depend on the number of quantities that are
specified (one, two, or three), For these problems, simple manipulations
lead to the results which are summarized in Table 1 where two types of re=-
lations are indicated: those obtained from the transvereality condition
and those obtained by combining the results of the tramsversality condition

with the Euler-Lagrange eguation (8-5) and the first integral (10).

Legendre-Clehsch condition, The Legendre-Clebsch condition indicates
that the drag is a minimum if the following inequalities are satisfied every-

et pumad P end muS BEE THE BB R >
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where along the extremal arc:

y 20, along the regular shape )
19)
l" €0, along the zero-slope shape

Switching function., From the previous discussion, it appears that the
Lagrange multiplier k‘. plays an important role in determining the composi-
tion of the extremal arc. If the terminology of control theory is employed,
this multiplier can be called the switching function; its properties are

as follows:

A\, =0, along the regular shape
A\, <O, along the zero-slope shape (20)

7\“ =0, at a corner point



b. GEOMETRY OF THE EXTREMAL ARC

In the previous section, the necessary conditions to be satisfied by
the extremal arc have been stated, In this section, several general conse=
quences of these equations are derived, referring, for the sake of brevity,
to the minimum drag problem (cl = = 1) with the wetted area unspecified
(C, = 0)s 1In order to facilitate the analysis, the following dimensionless

coordinates are introduced:
g=x/t, N=2y/4d (a)
together with the definitione

K = ‘tc/dcf v Ky= ch/cf (22)

With these coordinates, the first integral (10) reduces to the form

;c%n’u’-xl+n-x,v12 (23)

where T = d/¢ demotes the thickness ratio and T the derivative d1/de,

Basic inequalities. The application of the first integral at the end

points of the extremal arc indicates that the terminal values of the slope

are given by

byt pmf wemd ownd WM EBNE WS B PR e
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(ﬁ’i'ﬂ)i-Tr-K}/}
(24)
¥2C,
T g e 1o

and, consequently, are nonnegative providing the following basic inequalities

are satisfied:
Klzo, K1+1-K3>0 (25)

Incidentally, the optimum shape is blunt-nosed if Kl > 0 while it may be
sharp-nosed if l(l = 0,

Switching function., Since each extremal arc may involve more than one

subarc, it is of paramount importance to calculate the distribution of the

ewitching functionj in nondimensional form, this function can be defined as

o= Tg' N (26)
f

For the regular shape, it is known that o = O, For the zero-slope shape,
it is known that 'ﬁ = 0 and 7 = const. Consequently, the Euler-Lagrange

equation (8-1) reduces to

g=1-2K0 7
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vhich, in the light of the end condition (20-3), admits the particular inte-

gral

o= (1~ 2x3n°) (t=-¢) (28)

in which the subsoript ¢ refers to a corner point,

Sequence of subarcs. In order to determine the appropriate sequence
of subarcs, it is necessary to decide: (a) whether a corner point between
a regular shape and a zero-slope shape can occur; and (b) what the saximum
number of corner points is, Concerning the first question, the cormer con-
ditions (14) and the first integral (23) show that the tramsition from a
regular shape to a zerowslope shape, and vice versa, is poesible if the fol-
lowing relationship is satisfied:

R @)

with regard to the second question, Eq. (28) shows that, since the switching
function varies linearly with the abscissa along the zero-slope shape, it

can only vanish at one point of each zero-slope shape, Due to Eq. (20-3),
this point must be the corner point between the regular shape and the zero-
slope shape, This means that (a) the regular shape may be preceded or fol-
lowed by no more than one zero-slope echape and (b) the equations of the zero-
slope shapes can only be 7| = 0 and/or 7 = 1, Furthermore, because of Eq. (29)
and the properties of the switching functiom, the presence of zero-slope
shapes requires that

et wund G e WEE PR B W B —-
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n-o{xl-o

1 ek = (30)
n.l{l& 1 Ky = 0

1-21(3‘0

Since no more than two cornmer points and three subarcs can exist, the to-

tality of extremal arcs consists of four classes of bodies: (I) bodies

composed of a regular shape only, (II) bodies composed of a spike followed

by a regular shape, (III) bodies composed of a regular shape followed by a

c¢ylinder, and (IV) bodies composed of a spike followed by a regular shape

followed by a cylinder, These bodies are represented symbolically by

Class
Class
Class

Class

Family of solutions.

of class IV, its geometry

os!‘goo

g°S§5g1|

glsgsl.

I: o=0
II;: N=0+0s=0

(31)
III: ¢=0-N=1

Iv: M=0<«0=0«N=1

Since the most general type of extremml arc is

can be described by the equations

1=0

-, Ln 120 + 1- ) a

(32)

g -
175 fl 2% + 1= ) an
(o)

1=1
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vhere ¢ o and gl denote the abscissas of the two possible transition points,
Bodies of class I can be obtained from bodies of class IV by means of the
formal substitution & =0 gl = 1, An analogous remark holds for bodies
of class II where gl = 1 and for bodies of class III where go =0, It
should be noted, however, that the corner conditions need not be aat:l.atiod'

at these special pointe. In a functional form, Eqs. (32) can be rewritten

as

ns= (g, goo §10 K1| K3> (33)

80 that, after this equation is combined with any one of the following sets
of relations:

Class I3 ¢ =0,

Class II: K=0, glnl
(34)
Class III: go-o. &1+1-K3=0

Class IV: KI-O. K3-1

it is seen that a two parameter family of optimum bodies exists,

For particular types of boundary conditions, considerable simplifioca-
tions are possible. Thus, if the length is free (x1 s 0) or the volume ia
free (K} = 0), the number of independent parameters is reduced by ome. An
analogous remark holds for the case where the diameter is free, aince
l.l. +1la= K,. In oonclusion, the number of independent parameters goverming
the solution depends on the number of geometric quantities other than the

et oumS DN DNl AR N NE N e -
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wetted area which are prescribed, If three quantities are prescribed,

the problem admits a two-parameter family of solutions., If two quantities
are prescribed, the problem admits a one-parameter family of solutions.
Finally, if only one quantity is prescribed, the problem admits a zero-
parameter family of solutions, that is, the geometry of the extremal arec
in the £N~plane consists of a single curve regardless of the value of the
friction coefficient., In this connestion, the dimensionless boundary con=
ditions are ipdicated in Table 2 along with the dimensionless switching
function at the final point, the slope of the extremal arc at the final

point, and the number of independent parameters governing the solution,
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5¢ SOLUTION OF THE BOUNDARY VALUE PROBLEM

In this section, a general method for determining the unknowns ap-
pearing in Eqs. (32) is presented, The analysis is facilitated if several
nondimensional integrales are introduced. After the cubic root of both
sides of Eq., (23) is extracted, the variables are separated, and an inte-

gration over the reguiar shape is performed, the following result is obtained:

e,
— = (6 G K Ky (33)

where
T = 4/ (36)

denotes the thickness ratio and I a the nondimensional integral

1
Igg.ﬁ.ﬁ.g)-gfhgj;%”m1+n-gff*°dn G7)

nnrthbmore. by simple manipulations, the wetted area and the volume can

be expressed as

87/nd2 = Is(goo € Kl' K3)
(38)
Wyr/md = 1€, &0 Kys Kg)

—
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where

f W00 1 kB an

1
Ig(Ee B Kpo Ky) -fo ME=1 -8 + (g -E)

1l
fo 120+ 1 = k952 an
(39)

1
7/} - -1/3 d
. fon (e 1 - k1F) an
I (80 & Ko Ky) =j; Mae=1 - g + (g - €)=

fo (ks 1 - 51 an

For a given friction coefficient, the system composed of the six equations

(34) through (36) and (38) involves the nine quantities
To dy £y Sy Vy §y &y K K} (40)

which means that one particular optimum body can be determined if three ad-
ditional relationships are specified, For the boundary conditions con-
sidered in Table 2, these relationships are represented by any one of the

following sets:

d=Const , K =0 , K3=0

V = Const , Kl =0 N Kj =1
d =Const , £ = Const , =0
K (41)
d =Const , V = Const , Kl =0
L =Const, V = Const, 83 = xl +1
dsConst,, ft =Const, V = Const
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Drag coefficients After the boundary value problém has been solved,
the next step is to determine the drag of the optimum body. This drag can

be written as
4 ke ,¢3 )
] £
D= E? + I (42)
by ( P’ S

where IDp denotes the dimensionless integral
1
IDP -f ﬁ]}dg (43)
4]

Now, if the drag coefficient is referred to the frontal area at x = £ (that
is, 1f C) = 4D/md°), the following relationship can be readily established
between the drag coefficient, the friction coefficient, and the thickness

ratio:

-1 I (i)
IS

e

Notice that, if both sides of Eq. (23) are multiplied by dZ and integrated

over the entire length of the extremal arc, the relationship

v .
T " Kt s - sly (45)

A 4

-
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can be established. Consequently, after Eqs. (35), (44), and (45) are
combined, one deduces that

% 3
= = I3 (K + 3L - K3Iv) (46)
T

Drag ratio. Another interesting characteristic of the optimum body
is the drag ratio, that is, the ratio of the friction drag to the total

drag, Because of Eq. (44), this quantity is given by

2. -——;—“chs (47)
C
L )

which, in the light of Eq. (45), can be rewritten as

21
‘s S (48)



6. PARTICULAR CASES
In the previous seotions, the minimum drag problem was solved functiomally

for arbitrary boundary conditiomns, Here, several particular cases are con-
sidered, and the associated optimum shapes are calculated. Three classes
of problems are considered: (a) problems in which only one geometric
quantity is presoribed, (b) problems where two geometric quantities are
preecribed, and (c) problems where three geometric quantities are prescribed.
At the onset, a basic lemma relative to problems with the length unspecified
must be stated: Since the drag of a spike is zero regardless of its length,
one can take any extremal arc of class I and generate from it an infinite
number of equal drag solutions of class II by adding a spike of arbitrary
length in front. Analogously, one can take any extremal arc of class III
and generate from it an infinite number of equal drag solutions of class IV
by adding a spike of arbitrary length in front., Because of this, whenever

the length is free, only solutions of class I and/or class III are considered,

6.1¢ Given Diameter

If the diameter is given while the length and the volume are free, the
tranaversality condition leads to Kl-l(} = 0, Since Eqs. (34-3) and (34-4)
are not satisfied, there exists no extremal arc belonging to either class III
or claas IV, Furthermore, since the length is free, the basic lemma applies:
one may disregard all equal drag solutions of class II and search for a basic
extremal of class I, that is, involving a regular shape omly.

For € = 0 and & =1, the equation of the regular shape (32-2) can be
integrated to yleld

esst DENE DN SWN EE UM WOR R e
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23
n=¢ (49)

vhich means that the optimum body is a cone. Since I 4" 1, the following

value is obtained from Eq. (35) for the optimum thickness ratio:
v = Y8C, = 1.26 ¥, (50)

Furthermore, since Ig = 1/2, Eqs (46) indicates that the drag coefficient

per unit thickness ratio squared is given by
C
11’ = % = 1.5 (51)
T

and Eq. (48) implies that the friction drag of the optimum body is two-

thirds of the total drag,

6.2, Given Volume

If the volume is given while the diameter and the length are free, the
transversality condition leads to K =0, K3 = 1, and g, = O, Should the
zero-slope shape 1 = 1 exist, the switching function would be zero at both
ends of this subarc. However, because of Eq, (28), this is only possible
when € = L3 Since the length of the zero-slope shape 7 = 1 is zero, there
exists no extremal arc belonging to either class III or class IV. Further-
more, since the overall lergth of the body is free, the basic lemma applies:
one may disregard all equal drag solutions of class II and search for a basic

extremal of class I, that is, one involving a regular shape only.
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This unique extremal of class I can be found by substituting go = 0 and
gl = 1 into Eq. (32-2) so that, upon integration, the equation of the regue
lar ahape becomes (Fig. 1)

1\-:1.--(:!.-93"2 (52)

Since I, = 3/2y Bqe (35) ylelds the following value for the optimum thick-

ness ratios

T™T®™

il

556; = 0,84 »e; (53)

Finally, since I = 3/5 and I, = 9/20, Eq. (46) yields the folloving mini-

mum drag coefficient:

-c-g = % = 4,56 (5k)
v

and Eq.- (48) implies that the friction drag of the optimum body is eight-
ninths of the total drag,

6.3, Given Diameter and Length
If the diameter and the length are presoribded while the volume is free,

the transversality condition leads to l(3 = O, Extreml solutions of class IV
do not exist because Eq. (34~i) is violated. Analogously, extremal solutions
of class III must be ruled out eince Eqe (34-3) is solved by K, = - 1 and
this is incompatible with Ineq. (25-1). In conclusion, the totality of ex-

VAR MM N SR NN BN s — ot . —
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tremal arcs is represented by a one-parameter family of solutions of either
class I (regular shape) or class II (spike followed by a regular shape)
depending on whether the friction coefficient is smaller or larger than a
certain critical value, The representation of the results is facilitated

by introducing the friction parameter

Kp = == (55)

which, because of Eq. (35) as well as the condition that §, = 1, can be

rewritten as

Kp = I,(500 lcl) (56)

Bodies of class I. These solutions, which were originally studied by

Kennet (Ref, 3), consist of a regular shape only and are obtained for
go = 0and @ > l(:L 2 0. After Eq. (32-2) is employed, the equation of the

optimum shape can be written as

£ Ky)
g = m (57)

where

e W +n- W K
(M, K))= 0‘1*"\)2 +;los ?/KI -3arctan ﬁ% (58)
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Furthermore, because of Eqs, (46) and (56), the drag coefficient and the

friction parameter become

(59)
K‘ = £Q1, Kl)

Klimination of the parameter K1 from these equations yielde the functional
relationships

. %

which are presented in Figs. 2 and 3 and are valid in the interval O < I(f <.

Incidentally, the solution correspondiag to Ky = 0 1s a 3/4~power body while the

solution correasponding to Kf = 1 is a cone,

Bodies of olass II, These solutions consiat of a spike followed by a
regular shape and are obtained for O < go < 1 and xl-o. After the shape
of the optimum body, the drag coefficient, and the friction parameter are

written as

0 =8<¢ , n=0

g£-8
gL, <t=l , ﬂ-r:—gz
(61)

-
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elimination of the abscissa of the transition point from these equations
leads to functional relationships of the form (60) which are plotted in
Figs. 2 and 3 and are valid for 1 < Kf < @, It is worth noting that these
solutions consist of spikes followed by cones with the transition point

moving backwards as the friction parameter increases.

6.4, Given Diameter and Volume

If the diameter and the volume are given while the length is free,
the transversality conditicr leads to Kls O, Since the length is free,
the fundamental lemma indicates that one should disregard all equal drag
solutions of class II and class IV and search for the oneeparameter family
of extremal solutions of class I and class III only. These solutions occur
when the friction coefficient is smalier or larger than a certain critical
value, respectively. The representation of the results is facilitated by

troducing the thickness and friction parameters

by Ly
K = = 7 Ke = —x 32c (62)
T ﬂd3 ! £ nd £

which, because of Eqs. (35) and (38-2) as well as the condition that £ =0,

can be rewritten as
K,o= T,080 K5) oy Kp = To(6)4 K) T,(5 4 Ky) (63)

Bodies of class I. These bodies consist of a regular shape only and

are obtained for & = 1 and ~ ® < Ky <1, After Eqa. (32-2), (46), and (63)
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are employed, the optimum shape, the thickness parameter, the drag coef=

ficient, and the friction parameter can be rewritten as

1-Q -k
1-@ -k

9 - (51 + 6Ky + 9) (1 - k)™
1- -k

=
Iy
]
n
F
ol

(64)

1

%g - ?sz; [1- @ -5 [27 4 52 - 285, - 21 (@ - k?7]

x,-ég[9-<5x§+6x,+9) Q@ - k)27

Elimination of the parameter K3 from thess equations ylelds the functional

relationships

(63)

WP
£

Cp
Ti= 'ﬂ(§, Kf) ’ K‘Y = KT(Kt) N 1? -

which are plotted in Figs. 4 through 6 and are valid in the interval

0K, < 27/40, Incidentally, the solution corresponding to K, = Oisa

3/2=-pover body, that corresponding to Kf = 1/3 is a cone, and that correspond-

ing to Kf = 27/40 is such that the complements of the abscissa and the ordie

nate obey a 3/2-power law,

5
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Bodies of class III., These solutions consist of a regular shape

followed by a cylinder and are obtained for O < 51 £ and I(3 a l, After
the shape of the optimum body, the thickness parameter, the drag coefficient,

and the friction parameter are written as

0o sgsg , 1 -1-(1--51-)3/2

G <8<l , 1 =1

1l
KT.I-EBgl (66)
g T %% 0

elimination of the abscissa of the transition point leads to functional
relationships of the form (65) which are plotted in Figs, 4 through 6 and
are valid in the interval 27/40 < K, < @ Iu closing, it is worth noting

that the transition point shifts forward as the friction parameter increases,

6.5, Given length and Volume

If the length and the volume are given while the diameter is free, the
transversality condition leads to K3 = l(1¢ 1 and o, = O. Should the zero-
slops shape 7 = 1 exist, the switching function would be zero at both ends
of this subarc, and this would imply that gf = goo Since the length of the

zero-slope shape T = 1 is zero, there exists no extremal arc belonging to
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either class III or class IV. Coneequently, the totality of extreml arcs
is represented by a one-parameter family of solutions of either class I
(regular shape) or class II (spike followed by a regular shape) depending
on vhether the friction coefficient is smaller or larger than a certain
oritical value, The representation of the results is facilitated if a
thickness parameter and a friction parameter are introduced, These pa=

rameters are defined by

oI, K - (82 e (67)

and, becauss of Eqs. (35) and (38-2) as well as the condition that gl -l,

ocan be rewritten as

K = I;Va(go. K)o K= I, x1)1;°~/2(g°. ) (68)

g_o_giu of class I. These solutions consist of a regular shape only
and are obtained for € = O and = > K, 2 0. If Eq. (32-2) is employed,
the optimum shape can be rewritten as

vhere
c(n.xl)-f“%”[xlw-(uxl)ﬂ'wdﬂ (70)
Y
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Furthermore, Eqs. (46) and (68) yield the following expressions for the

thickness parameter, the drag coefficient, and the friction parameter:
X /8110 Kls
=
v A RE)

;’gz g1, X,) [xl g(1, K;) = (1 + K) h(K;) + 31(1(1)] (71)

[Ea, )
Ke = TR

where

1 -],
h(Kl)-L n7/3[x1+n-(1+x1>n2] > an
(72)

] o

1
1(k,) =/0 ﬂnl’/3 ["1 +M=-QQ+K) 'ﬂz

Elimination of the parameter K, from Egs. (69) and (71) yields functional
relationships of the form (65) which are presented in Figs. 7 through 9
and are valid in the interval O < Kf < 5.

Bodies of class II. These solutions coneist of a spike followed by

a regular shape and are obtained for O < go < ] and Kl = 0., After the
shape of the optimum body, the thickness parameter, the drag coefficient,

and the friction parameter are written as



(73)

"r'(—'ﬁ"ﬂz

1-¢)

elimination of the abacisea of the transition point leads to functiomal
relationships of the form (65) which are plotted in Figs, 7 through 9 and
are valid in the interval .5 < K, <= Notice that, as the friction pa-

rameter increases, the transition point moves backward,

6.6, Given Diameter, Length, and Volume
If the diameter, the length, and the volume are given while the wetted

area 1is free, a two-parameter family of solutions exists and includes bodies
belonging to each of the four classes defined previously, The representa-
tion of the results is facilitated if one defines the shapes paramcter and

the friction parameter as

bye %é;
l(u e :4-3 2 Kf .- — (74)

and observes that these parameters satisfy the conditions (35) and (38-2),

et
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Bodies of class I. These solutions consist of a regular shape only

snd are obtained when conditions (34-1) are satisfied, Consequently, the
shape of the optimum body is given by

g(n, xl' K;)

g= RL_Kp—-xiy (75)
where

1 -
g(n, Ko K3) -f‘; ‘H]'/}(Kl + M- KB'!F) 1/3 an (76)

The associated drag coefficient, shape parameter, and friction parameter

become
%g. §°00 Ky K[Kie, Ky Ky = KB(Ky, Ky) + 310Ky, K5) |
Kq = shzil:ll'(: l)(37 o
Eg = 8(1, Ky K;)
where
s x = 772 [ 01 nf] 7 e

1 -1/3
10Ky Ky) -fo n*/> [‘1 +1- xjf] V. an

(78)
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Elimination of the parameters K, and Ky from Eqs. (75) and (77) yields
functional relationships of the form

s nE, K, K,) 2.5, (79)
M € ' Nel o "? :!"s't

which are plotted in Figs. 10 through 15,

Bodies of class II. These solutions consist of a spike followed by a

regular shape and are obtained when conditions (34=2) are satisfied. After
the shape of the optimum body, the drag coefficient, the shape parameter,

and the friction parameter are written as

0Osgseg , N=0

: . 0y il 3/’
< L] L 3 -
O g°1-(J.-u,)

-a -k
350 [1 o g}.’g } 7+ o - sty - 2 - 1p*?] 0

K, = ZOE.[I i ::2 K}m [9 - (5K§ + 5)(’ +9Q - K,)m]
e = ) - a-2¥)

elimination of the parameters g° and l(3 yields functional relationahips of
the form (79) which are plotted in Fige. 10 through 13,
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Bodies of class III. These solutions consist of a regular shape

followed by a cylinder and are obtained when conditions (34=3) are satis~

fied. The shape of the optimum body is given by

(M K‘.l.)
£.8
{Osgsgl, - eve )
(81)
gls €<l , N=1
where
n -
g(n, X,) -[ > [xl sn-@+ xl)112] V2 an (82)
0
Furthermore, the drag coefficient, the shape parameter, and the friction
parameter become
2
B & M) o, k) Sy k(L k) - @+ K) AGG) & 340G)
= 8 + K.g - + +
2T [ U b U Q) hig) e 3G
h(K,)
Ks=1-§1+§1m (83)
l(f . g(1, Kl)
Y
where
1l
h(K,) -[ 77 [k + 1= (5 + O] 3
(] (84)

1(1(1)-[111"/3 [x1+n-(xl+1)112]'wd'n
)
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Elimination of the parameters §, and K, from Eqa. (81) and (83) yields
funoctional relationships of the form (79) which are plotted in Figs. 10
through 15,

Bodies of clasa IV. These solutions consist of a spike followed by a
regular shape followed by a oylinder and are obtained when conditions
(3k-kt) are satisfied. After the geometry of the optimum body, the drag

oocefficient, the shape parameter, and the friction parameter are written as

thtgo. n.o
. g, - 8 V2
5E=8 v M= -'El—_—E;
!1‘§$1 ’ Nl
(85)

c 3 27¢_ + 13¢
b 3 1
?-[ ;l'go)] [2- E: ]

9t +11§1
K ol o=
s - R

%" mgTy

elixination of the parameters g and gl leadas to functional relationships
of the form (79) which are plotted in Figs. 10 through 15,

Limiting curves. Now that the relationships concerning the geometry
of the body, the drag coefficient, the shape parameter, and the friction
parameter have been derived, it is useful to determine the shape parameter-
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friction parameter region in which the equations governing each class of
bodies are valid, After simple algebraic manipulations, the parawetric
equations defining the limiting curves between the different classes of

bodies are given by

2/3
L. 9 - (5K + 6y + 9) (1 = K;)
= 2065 1-(1-x3)2/3
1-(1 x3)

I=-1I

I-1III

(86)

Kasz%(l'go)
II - IV

Ks’l'iagl

IIT - Iv
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and, if the relevant parameters are eliminated, yield the functional re-
lation

K, = K,(X,) 87

which is presented in Fig, 16, Notice that no solution of class IV exists
for K, < 5/2 and no eolution of class I exists for K, > 3/2. Furthermore,
no solution of olass III occouwra for x. < 9/20 «nd no solution of class II

ocowrs for K’ > 9/20,
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7. DISCUSSION AND CONCIUSIONS

From the previous analysis, it appears that, despite the generality
of the present problem, the method of solution is relatively simple and
has the merit of leading to analytical solutions in each of the particular
cases considered here, The main comments to these solutions are as followss

(a) For the general problem in which the wetted area is free and
arbitrary conditions are assigned to the diameter, the length, and the
volume, the totality of exiremal arcs is reprecented by a two=parameter
family of solutioms if dimensionless coordinates are employed, that is, if
the abscissa and the ordinate are normelized with respect to the length
and the radius, FEach member of the family may involve at most two corner
points and, hence, three subarcs. Of these subarcs, one is characterized
by a positive pressure coefficient and is called the regular ehapej the
other two are characterized by a zero pressure coefficient and are called
zero=-slope shapes, Consequently, four classes of bodies can be identified:

(I) bodies composed of a regular shape only, (II) bodies composed of a spike

followed by a regular shape, (III) bodies composed of a regular shape followed

by a cylinder, and (IV) bodies composed of a spike followed by a regular
shape followed by a cylinder,

(b) If only one geometric quantity is assigned (the diameter or the
volume) a zero-parameter family of solutions exists (that is, a single curve).
In all cases, the solvtion is of class I, that is, consists of a regular
shape only, In particular, if the diameter is given, the solution is a cone
whose slope is such that the friction drag is 2/3 uf the total drag. Om

the other hand, if the volume is given, the complements of the ordinate and
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the abscissa obey a 3/2-power law, and the thickness ratio of the optimum
body is such that the friction drag is 8/9 oi the total drag.

(¢) If two geometric quantities are prescribed (the diemeter and the
length, the diameter and the volume, or the length and the volume), a one=
parameter family of solutions exists, This parameter, called the friction
paraneter, is proportional to the cubic root of the friction coefficient
and is indicative of the relative importance of the friction drag with re-
spect to the pressure drage The analysis shows that two distinct behaviors
are possible depending on whether the friction parameter is subcritical
(smaller than a certain critical value) or supercritical (larger than a
certain critical value). If the diameter and the length or the length and
the volume are given, the solution is of class I for subcritical friction
parameters and class II for supercritical friction parameters with the
transition point from the spike to the regular shape shifting backwards as
the friction parameter increases, On the other hand, if the diameter and
the volume are given, the solution is of class I for subcritical frictiom
parameters and class III for superoritical friction parameters with the
transition point from the regular shape to the cylinder shifting forward
as the friction parameter increases.

(d) If three geometric quantities are prescribed (the diameter, the
length, and the volume), a two-parameter family of solutions exists., These
paraneters, called the friction and shape parameters, determine the existence
of solutions belonging to each of the four classes defined previously,

In closing, it is worth noting that, if the limiting process cf-v-o
is carried out, the present solutions reduce to the inviscid flow solutions

already calculated in Refs, 1 and 2, It should also be noted that some of
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the optimum shapes obtained in the analysis are concave; consequently, these
bodies should be restudied using the Newton-Bussmann pressure coefficient
law; this, however, requires a more thorough understanding of the friction
drag associated with the poasible presence of free layers. Finally, when
the square of the thickness ratio becomes nomnegligible with respect to
one, the slender body approximation is violated; consequently, this case
should be reinvestigated using the exact Newtonian expression for the

pressure coefficient, that is, the sine square law,
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Fig. 1. Optimum shapes for given diameter and given volume.
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Fig. 9. Drag coefficient for given length and volume.
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